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Abstract An analysis of the reaction diffusion in a car-

rier-mediated transport process through a membrane is

presented. A simple approximate analytical expression of

concentration profiles is derived in terms of all dimen-

sionless parameters. Furthermore, in this work we employ

the homotopy perturbation method to solve the nonlinear

reaction–diffusion equations. Moreover, the analytical

results have been compared to the numerical simulation

using the Matlab program. The simulated results are com-

parable with the appropriate theories. The results obtained

in this work are valid for the entire solution domain.

Keywords Carrier-mediated transport � Homotopy

perturbation method � Liquid membrane � Nonlinear

reaction diffusion equation

Introduction

In recent years, membrane-based processes have attracted

considerable attention as a valuable technology for many

industries. The liquid membrane process is a technology

that combines solvent extraction and stripping in a single

step. The transport mechanism in a liquid membrane is

usually based on facilitated diffusion (Bartsch and Douglas

1996). Facilitated transport through liquid membranes has

been investigated for more than 30 years as a potential

separation technology (Baker and Blume 1990). Membrane

separation is an important process in biological systems.

Many synthetic membranes have been developed for

industrial applications. Important conventional membrane

technologies are microfiltration, ultrafiltration, reverse

osmosis and gas separation (Lonsdale 1982). Carrier-

mediated transport is described by subsequent partitioning,

complexation and diffusion. Carrier-mediated transport has

become an important area of study for engineers due to its

applications in various biological and nonbiological sys-

tems (Schultz et al. 1974; Schultz 1977; Smith et al. 1977;

Matson et al. 1977; Goddard 1977).

Four different types of liquid membranes can be dis-

tinguished: bulk, supported, emulsion and polymer inclu-

sion membranes. Bulk liquid membranes (BLMs) consist

of a source phase and a receiving phase separated by an

immiscible membrane phase (Diederich and Dick 1984).

Supported liquid membranes (SLMs) have the same con-

figuration as BLMs. The carrier-mediated cotransport of

alkali cations through an SLM is determined by diffusion

of the carrier cation through the membrane (Izatt et al.

1989; Fyles et al. 1991). A further reduction in membrane

thickness can be accomplished in emulsion liquid mem-

branes (ELMs). These have a thinner membrane separating

the source and receiving phases, although membrane

thickness changes with the amount of material transported

(Thien and Hatton 1988; Draxler and Mar 1986). A major

drawback associated with SLMs is their poor stability. This

factor has severely rendered liquid membranes mostly
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impractical for many large-scale applications (Sastre et al.

1998; de Gyves and de San Miguel 1999). Polymer inclusion

membranes (PIMs) retain most of the advantages of SLMs

while exhibiting excellent stability and versatility. In several

cases, PIMs with higher fluxes than those of SLMs have been

reported (Schow et al. 1996; Kim et al. 2000, 2001).

Barbero et al. (1995) reported limited cases of fast reac-

tion and fast diffusion. Also, Barbero et al. (1995) obtained

the solution of reaction–diffusion equations of facilitated

diffusion using the boundary element method. However, to

the best of our knowledge, there was no rigorous analytical

expression corresponding to the concentration profiles for all

values of parameters reported. The purpose of this commu-

nication is to arrive at an analytical expression for concen-

tration species at a carrier-mediated transport process using

the homotopy perturbation method (HPM).

Mathematical Formulation of the Problem and Analysis

The details of the model adopted have been fully described in

Barbero et al. (1995). Figure 1 represents a general kinetic

scheme of the carrier-mediated transport (facilitated diffu-

sion) through a liquid membrane. Facilitated or carrier-

mediated transport is a coupled transport process that com-

bines a (chemical) coupling reaction with a diffusion pro-

cess. The solute has first to react with the carrier to form a

solute–carrier complex, which then diffuses through the

membrane to finally release the solute at the permeate side. In

carrier-mediated transport a solute, S, reacts homogeneously

with a ligand, L, producing a complex, LS. A general scheme

that represents the reaction occurring in carrier-mediated

transport through a membrane is shown below:

Lþ S
�!k1

 �
k�1

LS ð1Þ

Here, k1 is the forward rate constant and k�1 is the reverse

rate constant of the solute–carrier reaction. This reaction

scheme is mathematically described by the following set of

nonlinear reaction–diffusion equations (Barbero et al.

1995):

DS
d2cS

dx2
¼ k1cScL � k�1cLS ð2Þ

DL
d2cL

dx2
¼ k1cScL � k�1cLS ð3Þ

DLS
d2cLS

dx2
¼ �ðk1cScL � k�1cLSÞ ð4Þ

The boundary conditions are as follows:

cS ¼ cSð0Þ; cL ¼ 0; cLS ¼ cT at x ¼ 0 ð5Þ
cS ¼ 0; cL ¼ cT ; cLS ¼ 0 at x ¼ d ð6Þ

where Dj and cj denote the diffusion coefficient and

concentration of species j j ¼ S; L and LSð Þ, respectively;

cT is the total carrier concentration; cSð0Þ is the interfacial

concentration of solute; and d is the membrane thickness. Here,

we can assume that DS ¼ DL ¼ DLS ¼ D. We have chosen

that cSð0Þ ¼ cT ¼ a. Equations 2–4 are transformed to a

dimensionless state by introducing the following parameters:

C�S ¼
cS

a
; C�L ¼

cL

a
; C�LS ¼

cLS

a
; X ¼ x

d
; M ¼ k1d2a

D
; N

¼ k�1d2

D

ð7Þ

The nonlinear reaction–diffusion Eqs. 2–4 in

dimensionless form are

d2C�S
dX2

¼ M C�SC�L � N C�LS ð8Þ

d2C�L
dX2

¼ M C�SC�L � N C�LS ð9Þ

d2C�LS

dX2
¼ �M C�SC�L þ N C�LS ð10Þ

where C�S; C�L and C�LS represent the dimensionless

concentration species and M and N are the dimensionless

diffusion reaction parameters. The boundary conditions in

dimensionless form are

C�S ¼ 1; C�L ¼ 0; C�LS ¼ 1 when X ¼ 0 ð11Þ

C�S ¼ 0; C�L ¼ 1; C�LS ¼ 0 when X ¼ 1 ð12Þ

Solution of Nonlinear Reaction–Diffusion Equations

Using the Homotopy Perturbation Method

Many authors have applied the HPM to solve the nonlinear

problem in physics and engineering sciences (Ghori et al.

Fig. 1 Schematic representation of carrier-mediated transport (facil-

itated diffusion) through a liquid membrane
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2007; Ozis and Yildirim 2007; Li and Liu 2006; Mousa and

Ragab 2008). Recently, this method has also been used to

solve some of the nonlinear problem in physical sciences

(Loghambal and Rajendran 2010; Meena and Rajendran

2010; Thiagarajan et al. 2011; Anitha et al. 2011). This

method is a combination of homotopy in topology and

classic perturbation techniques. He (1999, 2003a, 2003b)

used the HPM to solve the Lighthill equation, the Duffing

equation and the Blasius equation. The HPM is unique in

its application, accuracy and efficiency. The HPM uses the

imbedding parameter p as a small parameter, and only a

few iterations are needed to search for an asymptotic

solution. This method is especially suitable in solving this

type of problem as it arises in carrier-mediated transport.

Using this method (see Appendix 1), we can obtain the

concentrations of species as follows:

C�S X;M;Nð Þ ¼ 2� 2þ M

12

� �
X � sinh

ffiffiffiffi
N
p
ð1� XÞ

sinh
ffiffiffiffi
N
p

þ M

6
X3 � M

12
X4 ð13Þ

C�L X;M;Nð Þ ¼ 1� M

12
X � sinh

ffiffiffiffi
N
p
ð1� XÞ

sinh
ffiffiffiffi
N
p þ M

6
X3

� M

12
X4

ð14Þ

C�LS X;M;Nð Þ ¼ � 2M

N2
þM

N
X þ 2M sinh

ffiffiffiffi
N
p

X

N2 sinh
ffiffiffiffi
N
p

þ 1þ 2M

N2

� �
sinh

ffiffiffiffi
N
p
ð1� XÞ

sinh
ffiffiffiffi
N
p �M

N
X2

ð15Þ

Fig. 2 Dimensionless concentration profiles C�j plotted from Eqs. 13–15 for all values of dimensionless parameter N when M ¼ 0:1. Solid lines

represent the analytical solution obtained in this work; dotted lines represent the numerical solution
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Equations 13–15 represent the new analytical

expression of concentrations of species in carrier-

mediated transport.

Numerical Simulation

The function pdex4 in the Matlab software (MathWorks,

Natick, MA), which is a function of solving the initial-

boundary value problems for parabolic–elliptic partial dif-

ferential equations, is used to solve Eqs. 8–10 for the

boundary conditions 11 and 12. Figures 2, 3, 4, and 5 illus-

trate the comparison of analytical results obtained in this work

with the numerical results. Upon comparison, it is evident that

both results give satisfactory agreement for all values of

parameters. The Matlab program is also given in Appendix 2.

Discussion

The kinetic response of a liquid membrane depends on the

concentration species. The concentration depends on the

following two factors: M and N. The diffusion parameter

M represents the ratio of the characteristic time of the

enzymatic reaction to that of concentration diffusion. This

parameter can be varied by changing the thickness of the

membrane. This parameter describes the relative impor-

tance of diffusion and reaction in a liquid membrane. When

M is small, the kinetics are dominant resistance; the uptake

of concentration species is kinetically controlled. Under

these conditions, the concentration species across the

membrane is essentially uniform. When the diffusion

parameter M is large, diffusion limitations are the principal

determining factor.

Fig. 3 Dimensionless concentration profiles C�j plotted from Eqs. 13–15 for all values of dimensionless parameter N when M ¼ 1. Solid lines

represent the analytical solution obtained in this work; dotted lines represent the numerical solution
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Figures 2, 3, and 4 represent a series of dimensionless

concentration species for various values of the dimen-

sionless parameters N and M. From these figures, the

concentration species of C�S and C�LS reach the maximum

value 1 at X ¼ 0 and the minimum value 0 at X ¼ 1. The

concentration C�L reaches the maximum value 1 at X ¼ 1

and the minimum value 0 at X ¼ 0. Moreover, all con-

centration species are linear when N ¼ 0:1. It is evident

that the dimensionless concentration C�S slowly increases

when N increases. Furthermore, we noticed that there is a

simultaneous increase in the values of concentration C�L as

N increases and a simultaneous decrease in the values of

concentration C�LS as N decreases. In addition, our analyt-

ical results were compared with the simulation results. The

dimensionless concentration species C�j is shown in Fig. 5

for M ¼ 0:05 and N ¼ 50. From this figure, it is evident

that the concentration C�S increases initially, attains its

maximum value at X ¼ 0:1 and then decreases. We

Fig. 4 Dimensionless concentration profiles C�j plotted from Eqs. 13–15 for all values of dimensionless parameter N when M ¼ 5. Solid lines

represent the analytical solution obtained in this work; dotted lines represent the numerical solution

Fig. 5 A plot of dimensionless concentration profiles C�j through a

membrane. Curves are plotted using Eqs. 13–15. Solid lines represent

the analytical solution presented in this work; dotted lines represent

the numerical solution
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conclude that the concentration C�L decreases gradually and

attains the steady state and that the value of concentration

C�LS increases slowly and attains the steady state when

X� 0:7.

Conclusion

In this work, the nonlinear reaction–diffusion equation for

transport through the membrane has been solved analyti-

cally. We have presented analytical expressions corre-

sponding to the concentration species in terms of M and

N using the HPM. The analytical results will be useful for

the determination of the thickness of the liquid membrane

and the diffusion coefficients in this membrane. The the-

oretical results obtained can be used for optimization of the

performance of the membrane. Also, the theoretical model

described here can be used to obtain the parameters

required to improve the design of the membrane.
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Appendix 1: Approximate Analytical Solution

of the Concentration Species Using the Homotopy

Perturbation Method

In this appendix, we derive the solution of nonlinear

reaction Eqs. 8–10 using He’s HPM. To illustrate the basic

concepts of this method, we consider the following non-

linear differential equation (Ghori et al. 2007; Ozis and

Yildirim 2007; Li and Liu 2006; Mousa and Ragab 2008):

LðuÞ þ NðuÞ � f ðrÞ ¼ 0 ð16Þ

where L is a linear operator, N is a nonlinear operator and

f(r) is a given continuous function. We construct a

homotopy X� ½0; 1� ! R which satisfies

ð1� pÞ d2C�S
dX2

þ pðd
2C�S

dX2
�MC�SC�L þ NC�LSÞ ¼ 0 ð17Þ

ð1� pÞ d2C�L
dX2

þ pðd
2C�L

dX2
�MC�SC�L þ NC�LSÞ ¼ 0 ð18Þ

ð1� pÞ ðd
2C�LS

dX2
� NC�LSÞ þ pðd

2C�LS

dX2
þMC�SC�L � NC�LSÞ

¼ 0

ð19Þ

Suppose the approximate solutions of Eqs. 17–19 have

the form

C�S ¼ C�S0 þ pC�S1 þ p2C�S2 þ . . .

C�L ¼ C�L; 0 þ pC�L; 1 þ p2C�L 2 þ . . .

C�LS ¼ C�LS0 þ pC�LS 1 þ p2C�LS 2 þ . . .

8><
>: ð20Þ

Substituting Eq. 20 into Eqs. 17–19 and equating the

terms with the identical powers of p, we obtain

p0 :
d2C�S; 0

dX2
¼ 0 ð21Þ

p1 :
d2C�S; 1

dX2
�MC�S; 1C�L; 0 þ NC�LS; 0 ¼ 0 ð22Þ

and

p0 :
d2C�L; 0

dX2
¼ 0 ð23Þ

p1 :
d2C�L; 1

dX2
�MC�S; 0C�L; 0 þ NC�LS; 0 ¼ 0 ð24Þ

and

p0 :
d2C�LS; 0

dX2
� NC�LS; 0 ¼ 0 ð25Þ

p1 :
d2C�LS; 1

dX2
þMC�S; 0C�L; 0 � NC�LS; 1 ¼ 0 ð26Þ

The initial conditions are as follows:

C�S;0ðX ¼ 0Þ ¼ 1; C�S;0ðX ¼ 1Þ ¼ 0 ð27Þ

C�L;0ðX ¼ 0Þ ¼ 0; C�L;0ðX ¼ 1Þ ¼ 1 ð28Þ

C�LS;0ðX ¼ 0Þ ¼ 1; C�LS;0ðX ¼ 1Þ ¼ 0 ð29Þ

and

C�S;iðX ¼ 0Þ ¼ 0; C�S;iðX ¼ 1Þ ¼ 0 for all i ¼ 1; 2; 3. . .

ð30Þ
C�L;iðX ¼ 0Þ ¼ 0; C�L;iðX ¼ 1Þ ¼ 0 for all i ¼ 1; 2; 3. . .

ð31Þ
C�LS;iðX ¼ 0Þ ¼ 0; C�LS;iðX ¼ 1Þ ¼ 0 for all i ¼ 1; 2; 3. . .

ð32Þ

Solving Eqs. 21, 23 and 25 and using the boundary

condition Eqs. 27–29, we get

C�S; 0ðXÞ ¼ 1� X ð34Þ

C�L; 0ðXÞ ¼ X ð35Þ

C�LS; 0ðXÞ ¼
sinh

ffiffiffiffi
N
p
ð1� XÞ

sinh
ffiffiffiffi
N
p ð36Þ

Substituting the above values of C�S;0; C�L;0 and C�LS; 0 and

solving Eqs. 22, 24 and 26 using the boundary condition

Eqs. 30–32, we obtain the following results:
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C�S;1ðXÞ ¼ M
X3

6
� X4

12

� �
� sinh

ffiffiffiffi
N
p
ð1� XÞ

sinh
ffiffiffiffi
N
p

� M

2
þ 1

� �
X þ 1 ð37Þ

C�L;1ðXÞ ¼ M
X3

6
� X4

4

� �
� sinh

ffiffiffiffi
N
p
ð1� XÞ

sinh
ffiffiffiffi
N
p

� M

2
þ 1

� �
X þ 1 ð38Þ

C�L;S;1ðXÞ ¼
2M

N2 sinh
ffiffiffiffi
N
p sinh

ffiffiffiffi
N
p
ð1� XÞ þ sinh

ffiffiffiffi
N
p

X
� �

þM

N
X � X2 � 2

N

� �

ð39Þ

Adding Eqs. 34 and 37, we get Eq. 13 in the text.

Similarly, we can get Eqs. 14 and 15.

Appendix 2: Matlab Program to Find the Numerical

Solution of Equations 8–10

function pdex4

m = 0;

x = linspace(0,1);

t = linspace(0,1000);

sol = pdepe(m,@pdex4pde,@pdex4ic,@pdex4bc,x,t);

u1 = sol(:,:,1);

u2 = sol(:,:,2);

u3 = sol(:,:,3);

figure

plot(x,u1(end,:))

title(‘u1(x,t)’)

% ———————————————–

function (c,f,s) = pdex4pde(x,t,u,DuDx)

M = 0.1;

N = 1;

c = (1; 1; 1);

f = (1; 1; 1).* DuDx;

F1 = –M*u(1)*u(2) ? N*u(3);

F2 = –M*u(1)*u(2) ? N*u(3);

F3 = M*u(1)*u(2)–N*u(3);

s = (F1; F2; F3);

% ———————————————–

function u0 = pdex4ic(x);

u0 = (1; 0;0);

% ———————————————–

function (pl,ql,pr,qr) = pdex4bc(xl,ul,xr,ur,t)

pl = (ul(1)–1; ul(2);ul(3)–1);

ql = (0;0; 0);

pr = (ur(1); ur(2)–1; ur(3));

qr = (0; 0; 0);
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